Robust inference for finite poisson mixtures
نویسندگان
چکیده
منابع مشابه
Bayesian Analysis of Finite Poisson Mixtures
Finite Poisson mixtures are widely used to model overdispersed data sets for which the simple Poisson distribution is inadequate. Such data sets are very common in real applications. In this paper we investigate Bayesian estimation via MCMC for finite Poisson mixtures and we discuss some computational issues. The related problem of determining the number of components in a mixture is also treat...
متن کاملBayesian inference for transportation origin-destination matrices: the Poisson-inverse Gaussian and other Poisson mixtures
Transportation origin-destination analysis is investigated through the use of Poisson mixtures by introducing covariate-based models which incorporate different transport modelling phases and also allow for direct probabilistic inference on link traffic based on Bayesian predictions. Emphasis is placed on the Poisson-inverse Gaussian model as an alternative to the commonly used Poisson-gamma an...
متن کاملExact Statistical Inference for Some Parametric Nonhomogeneous Poisson Processes
Nonhomogeneous Poisson processes (NHPPs) are often used to model recurrent events, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness-of-fit tests for certain parametric NHPPs, using a method based on Monte Carlo simulation conditional on sufficient statistics. A closely related way of obtaining exact confidence intervals in parametri...
متن کاملAccurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملInference on networks of mixtures for robust robot mapping
The central challenge in robotic mapping is obtaining reliable data associations (or “loop closures”): state-of-the-art inference algorithms can fail catastrophically if even one erroneous loop closure is incorporated into the map. Consequently, much work has been done to push error rates closer to zero. However, a long-lived or multi-robot system will still encounter errors, leading to system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2001
ISSN: 0378-3758
DOI: 10.1016/s0378-3758(00)00207-x